Model Gallery

590 models from 1 repositories

Filter by type:

Filter by tags:

nanbeige4.1-3b-q8
Nanbeige4.1-3B is built upon Nanbeige4-3B-Base and represents an enhanced iteration of our previous reasoning model, Nanbeige4-3B-Thinking-2511, achieved through further post-training optimization with supervised fine-tuning (SFT) and reinforcement learning (RL). As a highly competitive open-source model at a small parameter scale, Nanbeige4.1-3B illustrates that compact models can simultaneously achieve robust reasoning, preference alignment, and effective agentic behaviors. Key features: Strong Reasoning: Capable of solving complex, multi-step problems through sustained and coherent reasoning within a single forward pass, reliably producing correct answers on benchmarks like LiveCodeBench-Pro, IMO-Answer-Bench, and AIME 2026 I. Robust Preference Alignment: Outperforms same-scale models (e.g., Qwen3-4B-2507, Nanbeige4-3B-2511) and larger models (e.g., Qwen3-30B-A3B, Qwen3-32B) on Arena-Hard-v2 and Multi-Challenge. Agentic Capability: First general small model to natively support deep-search tasks and sustain complex problem-solving with >500 rounds of tool invocations; excels in benchmarks like xBench-DeepSearch (75), Browse-Comp (39), and others.

Repository: localaiLicense: apache-2.0

nanbeige4.1-3b-q4
Nanbeige4.1-3B is built upon Nanbeige4-3B-Base and represents an enhanced iteration of our previous reasoning model, Nanbeige4-3B-Thinking-2511, achieved through further post-training optimization with supervised fine-tuning (SFT) and reinforcement learning (RL). As a highly competitive open-source model at a small parameter scale, Nanbeige4.1-3B illustrates that compact models can simultaneously achieve robust reasoning, preference alignment, and effective agentic behaviors. Key features: Strong Reasoning: Capable of solving complex, multi-step problems through sustained and coherent reasoning within a single forward pass, reliably producing correct answers on benchmarks like LiveCodeBench-Pro, IMO-Answer-Bench, and AIME 2026 I. Robust Preference Alignment: Outperforms same-scale models (e.g., Qwen3-4B-2507, Nanbeige4-3B-2511) and larger models (e.g., Qwen3-30B-A3B, Qwen3-32B) on Arena-Hard-v2 and Multi-Challenge. Agentic Capability: First general small model to natively support deep-search tasks and sustain complex problem-solving with >500 rounds of tool invocations; excels in benchmarks like xBench-DeepSearch (75), Browse-Comp (39), and others.

Repository: localaiLicense: apache-2.0

vllm-omni-z-image-turbo
Z-Image-Turbo via vLLM-Omni - A distilled version of Z-Image optimized for speed with only 8 NFEs. Offers sub-second inference latency on enterprise-grade H800 GPUs and fits within 16GB VRAM. Excels in photorealistic image generation, bilingual text rendering (English & Chinese), and robust instruction adherence.

Repository: localaiLicense: apache-2.0

vllm-omni-wan2.2-t2v
Wan2.2-T2V-A14B via vLLM-Omni - Text-to-video generation model from Wan-AI. Generates high-quality videos from text prompts using a 14B parameter diffusion model.

Repository: localaiLicense: apache-2.0

vllm-omni-wan2.2-i2v
Wan2.2-I2V-A14B via vLLM-Omni - Image-to-video generation model from Wan-AI. Generates high-quality videos from images using a 14B parameter diffusion model.

Repository: localaiLicense: apache-2.0

vllm-omni-qwen3-omni-30b
Qwen3-Omni-30B-A3B-Instruct via vLLM-Omni - A large multimodal model (30B active, 3B activated per token) from Alibaba Qwen team. Supports text, image, audio, and video understanding with text and speech output. Features native multimodal understanding across all modalities.

Repository: localaiLicense: apache-2.0

vllm-omni-qwen3-tts-custom-voice
Qwen3-TTS-12Hz-1.7B-CustomVoice via vLLM-Omni - Text-to-speech model from Alibaba Qwen team with custom voice cloning capabilities. Generates natural-sounding speech with voice personalization.

Repository: localaiLicense: apache-2.0

huihui-glm-4.6v-flash-abliterated
**Huihui-GLM-4.6V-Flash (Abliterated)** A text-based large language model derived from the **zai-org/GLM-4.6V-Flash** base model, featuring reduced safety filters and uncensored capabilities. Designed for text generation, it supports conversational tasks but excludes image processing. **Key Features:** - **Base Model**: GLM-4.6V-Flash (original author: zai-org) - **Quantized Format**: GGUF (optimized for efficiency). - **No Image Support**: Only text-based interactions are enabled. - **Custom Training**: Abliterated to remove restrictive outputs, prioritizing openness over safety. **Important Notes:** - **Risk of Sensitive Content**: Reduced filtering may generate inappropriate or controversial outputs. - **Ethical Use**: Suitable for research or controlled environments; not recommended for public or commercial deployment without caution. - **Legal Responsibility**: Users must ensure compliance with local laws and ethical guidelines. **Use Cases:** - Experimental text generation. - Controlled research environments. - Testing safety filtering mechanisms. *Note: This model is not suitable for production or public-facing applications without thorough review.*

Repository: localai

qwen3-coder-30b-a3b-instruct-rtpurbo-i1
The model in question is a quantized version of the original **Qwen3-Coder** large language model, specifically tailored for code generation. The base model, **RTP-LLM/Qwen3-Coder-30B-A3B-Instruct-RTPurbo**, is a 30B-parameter variant optimized for instruction-following and code-related tasks. It employs the **A3B attention mechanism** and is trained on diverse data to excel in programming and logical reasoning. The current repository provides a quantized (compressed) version of this model, which is suitable for deployment on hardware with limited memory but loses some precision compared to the original. For a high-fidelity version, the unquantized base model is recommended.

Repository: localai

glm-4.5v-i1
The model in question is a **quantized version** of the **GLM-4.5V** large language model, originally developed by **zai-org**. This repository provides multiple quantized variants of the model, optimized for different trade-offs between size, speed, and quality. The base model, **GLM-4.5V**, is a multilingual (Chinese/English) large language model, and this quantized version is designed for efficient inference on hardware with limited memory. Key features include: - **Quantization options**: IQ2_M, Q2_K, Q4_K_M, IQ3_M, IQ4_XS, etc., with sizes ranging from 43 GB to 96 GB. - **Performance**: Optimized for inference, with some variants (e.g., Q4_K_M) balancing speed and quality. - **Vision support**: The model is a vision model, with mmproj files available in the static repository. - **License**: MIT-licensed. This quantized version is ideal for applications requiring compact, efficient models while retaining most of the original capabilities of the base GLM-4.5V.

Repository: localaiLicense: mit

qwen3-vl-30b-a3b-instruct
Meet Qwen3-VL — the most powerful vision-language model in the Qwen series to date. This generation delivers comprehensive upgrades across the board: superior text understanding & generation, deeper visual perception & reasoning, extended context length, enhanced spatial and video dynamics comprehension, and stronger agent interaction capabilities. Available in Dense and MoE architectures that scale from edge to cloud, with Instruct and reasoning‑enhanced Thinking editions for flexible, on-demand deployment. #### Key Enhancements: * **Visual Agent**: Operates PC/mobile GUIs—recognizes elements, understands functions, invokes tools, completes tasks. * **Visual Coding Boost**: Generates Draw.io/HTML/CSS/JS from images/videos. * **Advanced Spatial Perception**: Judges object positions, viewpoints, and occlusions; provides stronger 2D grounding and enables 3D grounding for spatial reasoning and embodied AI. * **Long Context & Video Understanding**: Native 256K context, expandable to 1M; handles books and hours-long video with full recall and second-level indexing. * **Enhanced Multimodal Reasoning**: Excels in STEM/Math—causal analysis and logical, evidence-based answers. * **Upgraded Visual Recognition**: Broader, higher-quality pretraining is able to “recognize everything”—celebrities, anime, products, landmarks, flora/fauna, etc. * **Expanded OCR**: Supports 32 languages (up from 19); robust in low light, blur, and tilt; better with rare/ancient characters and jargon; improved long-document structure parsing. * **Text Understanding on par with pure LLMs**: Seamless text–vision fusion for lossless, unified comprehension. #### Model Architecture Updates: 1. **Interleaved-MRoPE**: Full‑frequency allocation over time, width, and height via robust positional embeddings, enhancing long‑horizon video reasoning. 2. **DeepStack**: Fuses multi‑level ViT features to capture fine-grained details and sharpen image–text alignment. 3. **Text–Timestamp Alignment:** Moves beyond T‑RoPE to precise, timestamp‑grounded event localization for stronger video temporal modeling. This is the weight repository for Qwen3-VL-30B-A3B-Instruct.

Repository: localaiLicense: apache-2.0

qwen3-vl-30b-a3b-thinking
Qwen3-VL-30B-A3B-Thinking is a 30B parameter model that is thinking.

Repository: localaiLicense: apache-2.0

qwen3-vl-4b-instruct
Qwen3-VL-4B-Instruct is the 4B parameter model of the Qwen3-VL series.

Repository: localaiLicense: apache-2.0

qwen3-vl-32b-instruct
Qwen3-VL-32B-Instruct is the 32B parameter model of the Qwen3-VL series.

Repository: localaiLicense: apache-2.0

qwen3-vl-4b-thinking
Qwen3-VL-4B-Thinking is the 4B parameter model of the Qwen3-VL series that is thinking.

Repository: localaiLicense: apache-2.0

qwen3-vl-2b-thinking
Qwen3-VL-2B-Thinking is the 2B parameter model of the Qwen3-VL series that is thinking.

Repository: localaiLicense: apache-2.0

qwen3-vl-2b-instruct
Qwen3-VL-2B-Instruct is the 2B parameter model of the Qwen3-VL series.

Repository: localaiLicense: apache-2.0

huihui-qwen3-vl-30b-a3b-instruct-abliterated
These are quantizations of the model Huihui-Qwen3-VL-30B-A3B-Instruct-abliterated-GGUF

Repository: localaiLicense: apache-2.0

qwen3-vl-8b-instruct
Qwen3-VL-8B-Instruct is the 8B parameter model of the Qwen3-VL series. Uses recommended default parameters according to Unsloth documentation for Qwen 3 VL.

Repository: localaiLicense: apache-2.0

qwen3-vl-8b-thinking
Qwen3-VL-8B-Thinking is the 8B parameter model of the Qwen3-VL series that is thinking. Uses recommended default parameters according to Unsloth documentation for Qwen 3 VL.

Repository: localaiLicense: apache-2.0

huggingfacetb_smollm3-3b
SmolLM3 is a 3B parameter language model designed to push the boundaries of small models. It supports 6 languages, advanced reasoning and long context. SmolLM3 is a fully open model that offers strong performance at the 3B–4B scale. The model is a decoder-only transformer using GQA and NoPE (with 3:1 ratio), it was pretrained on 11.2T tokens with a staged curriculum of web, code, math and reasoning data. Post-training included midtraining on 140B reasoning tokens followed by supervised fine-tuning and alignment via Anchored Preference Optimization (APO).

Repository: localaiLicense: apache-2.0

Page 1